Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 113(1): 11-20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35913221

RESUMO

Burkholderia contaminans MS14, isolated from a soil sample in Mississippi, is known for producing the novel antifungal compound occidiofungin. In addition, MS14 exhibits a broad range of antibacterial activities against common plant pathogens. Random mutagenesis and gene complementation indicate that four genes are required for antibacterial activity of strain MS14 against the fire blight pathogen Erwinia amylovora. With the aim of finding the biosynthetic gene cluster for the unknown antibacterial compound, we used RNA-seq to analyze the transcriptome of MS14 wild type and mutants lacking antibacterial activity. The twofold lower expressed genes in all mutants were studied, and a polyketide synthase (PKS) gene cluster was predicted to be directly involved in MS14 antibacterial activities. The nptII-resistance cassette and CRISPR-Cas9 systems were used to mutate the PKS gene cluster. Plate bioassays showed that either insertion or frame-shifting one of the PKS genes resulted in a loss of antibacterial activity. Considering that the antibacterial-defective mutants maintain the same antifungal activities as the wild-type strain, the results suggest that this PKS gene cluster is highly likely to be involved in or directly responsible for the production of MS14 antibacterial activity. Purification efforts revealed that the antibacterial activity of the compound synthesized by the gene cluster is sensitive to UV radiation. Nevertheless, these findings have provided more insights to understand the antibacterial activity of strain MS14.


Assuntos
Burkholderia , Policetídeos , Antifúngicos , Ligases/genética , Doenças das Plantas/microbiologia , Burkholderia/genética , Antibacterianos/farmacologia , Família Multigênica
2.
Expert Opin Drug Discov ; 16(7): 807-822, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33467922

RESUMO

Introduction: The increasing threat of antibiotic-resistant pathogens makes it imperative that new antibiotics to combat them are discovered. Burkholderia is a genus of Gram-negative, non-sporulating bacteria. While ubiquitous and capable of growing within plants and groundwater, they are primarily soil-dwelling organisms. These include the more virulent forms of Burkholderia such as Burkholderia mallei, Burkholderia pseudomallei, and the Burkholderia cepacia complex (Bcc).Areas covered: This review provides a synopsis of current research on the natural products isolated from the genus Burkholderia. The authors also cover the research on the drug discovery efforts that have been performed on the natural products derived from Burkholderia.Expert opinion: Though Burkholderia has a small number of pathogenic species, the majority of the genus is avirulent and almost all members of the genus are capable of producing useful antimicrobial products that could potentially lead to the development of novel therapeutics against infectious diseases. The need for discovery of new antibiotics is urgent due to the ever-increasing prevalence of antibiotic-resistant pathogens, coupled with the decline in the discovery of new antibiotics.


Assuntos
Produtos Biológicos , Infecções por Burkholderia , Burkholderia pseudomallei , Burkholderia , Produtos Biológicos/farmacologia , Descoberta de Drogas , Humanos
3.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188204

RESUMO

Burkholderia contaminans MS14 was isolated from soil in Mississippi. When it is cultivated on nutrient broth-yeast extract agar, the colonies exhibit bactericidal activity against a wide range of plant-pathogenic bacteria. A bacteriostatic compound with siderophore activity was successfully purified and was determined by nuclear magnetic resonance spectroscopy to be ornibactin. Isolation of the bactericidal compound has not yet been achieved; therefore, the exact nature of the bactericidal compound is still unknown. During an attempt to isolate the bactericidal compound, an interesting relationship between the production of ornibactin and the bactericidal activity of MS14 was characterized. Transposon mutagenesis resulted in two strains that lost bactericidal activity, with insertional mutations in a nonribosomal peptide synthetase (NRPS) gene for ornibactin biosynthesis and a luxR family transcriptional regulatory gene. Coculture of these two mutant strains resulted in restoration of the bactericidal activity. Furthermore, the addition of ornibactin to the NRPS mutant restored the bactericidal phenotype. It has been demonstrated that, in MS14, ornibactin has an alternative function, aside from iron sequestration. Comparison of the ornibactin biosynthesis genes in Burkholderia species shows diversity among the regulatory elements, while the gene products for ornibactin synthesis are conserved. This is an interesting observation, given that ornibactin is thought to have the same defined function within Burkholderia species. Ornibactin is produced by most Burkholderia species, and its role in regulating the production of secondary metabolites should be investigated.IMPORTANCE Identification of the antibacterial product from strain MS14 is not the key feature of this study. We present a series of experiments that demonstrate that ornibactin is directly involved in the bactericidal phenotype of MS14. This observation provides evidence for an alternative function for ornibactin, aside from iron sequestration. Ornibactin should be further evaluated for its role in regulating the biosynthesis of secondary metabolites in other Burkholderia species.


Assuntos
Antibacterianos/metabolismo , Antibiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/genética , Burkholderia/fisiologia , Sideróforos/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Burkholderia/química , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Ferro/metabolismo , Mutagênese , Mutagênese Insercional , Peptídeo Sintases/genética , Proteínas Repressoras/genética , Sideróforos/química , Sideróforos/farmacologia , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...